
Suggested Solution to Problem Set 11

1 Integration

(i) First, we write x2 + 2x+ 4 = (x+ 1)2 + 3.

Letting x+ 1 =
√
3 tan θ, where −π

2
< θ <

π

2
. Then, dx =

√
3 sec2 θ dθ.

The integral becomes∫
x

x2 + 2x+ 4
dx =

∫ √
3 tan θ − 1

3(tan2 θ + 1)
·
√
3 sec2 θ dθ

=

√
3

3

∫ (√
3 tan θ − 1

)
dθ

=

(√
3
)2

3

∫
tan θ dθ −

√
3

3

∫
1 dθ

= ln | sec θ| −
√
3

3
θ + C

= ln

∣∣∣∣∣
√

x2 + 2x+ 4

3

∣∣∣∣∣−
√
3

3
tan−1

(
x+ 1√

3

)
+ C

=
1

2
ln(x2 + 2x+ 4)−

√
3

3
tan−1

(
x+ 1√

3

)
+ C ′

where C, C ′ are arbitrary constants.

(ii) First, we write

3x2 − 2x

1 + x2
=

3(1 + x2)− 2x− 3

1 + x2
= 3− 2x+ 3

1 + x2

Then, we have ∫
2x

1 + x2
dx =

∫
d(1 + x2)

1 + x2
= ln(1 + x2) + c1

and ∫
3

1 + x2
dx = 3 tan−1 x+ c2

where c1, c2 are arbitrary constants.

Thus, we have ∫
3x2 − 2x

1 + x2
dx =

∫
3 dx−

∫
2x

1 + x2
dx−

∫
3

1 + x2
dx

= 3x− ln(1 + x2)− 3 tan−1 x+ C

where C is an arbitrary constant.
1If you have any problems or typos, please contact me via maxshung.math@gmail.com
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(iii) Since
1

2 cos 1.5x
=

1

2
sec

(
3x

2

)
, hence we have

∫
1

2 cos 1.5x
dx =

2

3

∫
1

2
sec

(
3x

2

)
d

(
3x

2

)
=

1

3

∫
sec

(
3x
2

) [
sec

(
3x
2

)
+ tan

(
3x
2

)]
sec

(
3x
2

)
+ tan

(
3x
2

) d

(
3x

2

)
Note that

d

[
sec

(
3x

2

)
+ tan

(
3x

2

)]
=

[
sec

(
3x

2

)
tan

(
3x

2

)
+ sec2

(
3x

2

)]
d

(
3x

2

)
Thus, we have ∫

1

2 cos 1.5x
dx =

1

3

∫
d
[
sec

(
3x
2

)
+ tan

(
3x
2

)][
sec

(
3x
2

)
+ tan

(
3x
2

)]
=

1

3
ln

∣∣∣∣sec(3x

2

)
+ tan

(
3x

2

)∣∣∣∣+ C

where C is an arbitrary constant.

(iv) (1) Observe that
1

1 + sin2 t
=

1

2 sin2 t+ cos2 t
=

sec2 t

2 tan2 t+ 1
.

Define f(t) =
1

1 + sin2 t
. Note that

f(π − t) =
1

1 + sin2(π − t)
=

1

1 + sin2 t
= f(t)

Therefore, we have ∫ π

0

f(t) dt =

∫ π
2

0

f(t) dt+

∫ π

π
2

f(t) dt

=

∫ π
2

0

f(t) dt+

∫ π
2

0

f(π − t)︸ ︷︷ ︸
f(t)

dt

= 2

∫ π
2

0

f(t) dt

Next, we compute the definite integral as follows:∫ π

0

1

1 + sin2 t
dt = 2

∫ π
2

0

sec2 t

2 tan2 t+ 1
dt

= 2 · 1
2

∫ π
2

0

d(tan t)

tan2 t+ 1
2

=
1√
2
tan−1

(√
2 tan t

) ∣∣∣π2
0

=
√
2
(π
2
− 0

)
=

√
2π

2
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(2) Again, we need to be careful that the substitution is not a bijection.

Define f(t) =
cos t

1 + sin2 t
and observe for π

2
≤ t ≤ π, that

f (π − t) =
cos(π − t)

1 + sin2(π − t)
= − cos t

1 + sin2 t
= −f(t)

Therefore, we have ∫ π

0

f(t) dt =

∫ π
2

0

f(t) dt+

∫ π

π
2

f(t) dt

=

∫ π
2

0

f(t) dt+

∫ π
2

0

f(π − t)︸ ︷︷ ︸
−f(t)

dt

=

∫ π
2

0

f(t) dt−
∫ π

2

0

f(t) dt

= 0

Thus, we have
∫ π

0

cos t

1 + sin2 t
dt = 0 .

(3) Define g(t) =
sin 2t

1 + sin2 t
.

Since g(t) is not bijective on [0, π], so we need to separate it into [0, π
2
] and [π

2
, π].

Observe that g(π − t) = −g(t) for any t ∈ [π
2
, π], so we have∫ π

0

sin 2t

1 + sin2 t
dt =

∫ π
2

0

sin 2t

1 + sin2 t
dt+

∫ π

π
2

sin 2t

1 + sin2 t
dt

=

∫ π
2

0

sin 2t

1 + sin2 t
dt+

∫ π
2

0

sin(2π − 2t)

1 + sin2(π − t)
dt

=

∫ π
2

0

sin 2t

1 + sin2 t
dt−

∫ π
2

0

sin 2t

1 + sin2 t
dt

= 0

Remark. Some of you may do in this way:∫ π

0

sin 2t

1 + sin2 t
dt =

∫ π

0

d(1 + sin2 t)

1 + sin2 t
= ln(1 + sin2 t)

∣∣∣π
0
= 0

It is incorrect although the numerical answer is the same as the substitution u(t) = 1+sin2 t

is not bijective from [0, π] to [1, 2].

(v) (Partial fraction decomposition)

(1) Multiplying both sides by (x− a)(x− b) and gives

1 ≡ C(x− b) +D(x− a)

for any x. Assuming a− b ̸= 0, we have

C +D = 0

−bC −Da = 1

and hence C =
1

a− b
and D =

−1

a− b
.
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(2) (a) Note that

1

3x2 + 10x+ 3
=

1

(3x+ 1)(x+ 3)
=

1

3

(
1

(x− (−1/3))(x− (−3))

)
=

1

3

(
1/(3− 1/3)

x+ 1/3
− 1/(3− 1/3)

x+ 3

)
=

3

8

(
1

3x+ 1

)
− 1

8

(
1

x+ 3

)
Therefore, we have∫ 1

0

1

3x2 + 10x+ 3
dx =

3

8

∫ 1

0

1

3x+ 1
dx− 1

8

∫ 1

0

1

x+ 3
dx

=

[
1

8
ln |3x+ 1| − 1

8
ln |x+ 3|

]1
0

=
1

4
ln 2− 1

4
ln 2− 0 +

1

8
ln 3

=
ln 3

8

(b) Rewrite
x

2x2 − 4x− 6
=

x

2(x+ 1)(x− 3)
. Then, we observe that

x

2(x+ 1)(x− 3)
=

x+ 1− 1

2(x+ 1)(x− 3)
=

1

2(x− 3)
− 1

2(x+ 1)(x− 3)

=
1

2(x− 3)
− 1

2

(
− 1/4

x+ 1
+

1/4

x− 3

)
=

3

8

(
1

x− 3

)
+

1

8

(
1

x+ 1

)
Therefore, it follows that∫ 2

0

x

2x2 − 4x− 6
dx =

3

8

∫ 2

0

1

x− 3
dx+

1

8

∫ 2

0

1

x+ 1
dx

=

[
3

8
ln |x− 3|+ 1

8
ln |x+ 1|

]2
0

=
1

8
ln 3− 3

8
ln 3

= − ln 3

4

(3) Note that

1

x3 − 2x2 − x+ 2
≡ 1

x2(x− 2)− (x− 2)
=

1

(x2 − 1)(x− 2)

=
1

(x− 1)(x+ 1)(x− 2)

Then, we let

1

(x− 1)(x+ 1)(x− 2)
≡ A

x− 1
+

B

x+ 1
+

C

x− 2
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where A,B and C are real constants.

Multiplying both sides by (x− 1)(x+ 1)(x− 2) and gives

1 ≡ A(x+ 1)(x− 2) +B(x− 1)(x− 2) + C(x− 1)(x+ 1)

Putting x = 1 on both sides, we have 1 = A(2)(−1) + 0 + 0 and so A = −1
2
.

Putting x = 2 on both sides, we have 1 = 0 + 0 + C(1)(3) and so C = 1
3
.

Putting x = −1 on both sides, we have 1 = 0 +B(−2)(−3) + 0 and so B = 1
6
.

Therefore, we have

1

(x− 1)(x+ 1)(x− 2)
≡ −1

2

(
1

x− 1

)
+

1

6

(
1

x+ 1

)
+

1

3

(
1

x− 2

)
and thus∫

1

x3 − 2x2 − x+ 2
dx = −1

2

∫
1

x− 1
dx+

1

6

∫
1

x+ 1
dx+

1

3

∫
1

x− 2
dx

= −1

2
ln |x− 1|+ 1

6
ln |x+ 1|+ 1

3
ln |x− 2|+ C

where C is an arbitrary constant.

(iv) Note that
1

ex − e−x
=

1

2

(
2

ex − e−x

)
=

1

2 sinhx
.

Hence, we have∫ 2

1

1

ex − e−x
dx =

1

2

∫ 2

1

1

sinhx
· sinhx
sinhx

dx

=
1

2

∫ 2

1

d(coshx)

cosh2 x− 1

=
1

4

∫ 2

1

(
1

coshx− 1
− 1

coshx+ 1

)
d(coshx)

=
1

4
[ln | coshx− 1| − | coshx+ 1|]21

=
1

4
ln

(
cosh 2− 1

cosh 2 + 1

)
− 1

4
ln

(
cosh 1− 1

cosh 1 + 1

)
= tanh−1

(
e

1 + e+ e2

)
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2 Matrix

(i) By applying elementary row operations, we write
1 0 1

2 0 5

4 2 2

1 0 0

0 1 0

0 0 1

 −2R1+R2→R2−−−−−−−−→
−4R1+R3→R3


1 0 1

0 0 3

0 2 −2

1 0 0

−2 1 0

−4 0 1


1
3
R2→R2−−−−−→

1
2
R3→R3


1 0 1

0 0 1

0 1 −1

1 0 0

−2
3

1
3

0

−2 0 1
2

 −R2+R1→R1−−−−−−−−→
R2+R3→R3


1 0 0

0 0 1

0 1 0

5
3

−1
3

0

−2
3

1
3

0

−8
3

1
3

1
2


R2↔R3−−−−→


1 0 0

0 1 0

0 0 1

5
3

−1
3

0

−8
3

1
3

1
2

−2
3

1
3

0



Thus, we have


1 0 1

2 0 5

4 2 2


−1

=


5
3

−1
3

0

−8
3

1
3

1
2

−2
3

1
3

0

.

(ii) We apply the elementary row operations as part (i), then
2 0 2

9 5 2

4 3 0

1 0 0

0 1 0

0 0 1

 − 9
2
R1+R2→R2−−−−−−−−−→

−2R1+R3→R3


2 0 2

0 5 −7

0 3 −4

1 0 0

−9
2

1 0

−2 0 1


1
5
R2→R2−−−−−→

1
2
R1→R1


1 0 1

0 1 −7
5

0 3 −4

1
2

0 0

− 9
10

1
5

0

−2 0 1

 −3R2+R3→R3−−−−−−−−→


1 0 1

0 1 −7
5

0 0 1
5

1
2

0 0

− 9
10

1
5

0

7
10

−3
5

1


5R3→R3−−−−−→


1 0 1

0 1 −7
5

0 0 1

1
2

0 0

− 9
10

1
5

0

7
2

−3 5

 −R3+R1→R1−−−−−−−−→
7
5
R3+R2→R2


1 0 0

0 1 0

0 0 1

−3 3 −5

4 −4 7

7
2

−3 5



Thus, we have


2 0 2

9 5 2

4 3 0


−1

=


−3 3 −5

4 −4 7

7
2

−3 5



6



3 Basis and linear independence

(i) (1) Since

∣∣∣∣∣∣∣∣∣
1 2 3

4 5 6

7 8 9

∣∣∣∣∣∣∣∣∣ = 0, so the collection of vectors form is linearly dependent.

As it is linear dependent set, so it does not form a basis for R3.

(2) Suppose that

1 0 0

0 2 2

 ∼

1 0 0

0 1 1

 which is in row reduced echelon form, and there

are two non-zero rows.

Thus, the collection of vectors form is linearly independent.

As there are only two linear independent vectors, so it is not a basis for R3.

(3) Since

∣∣∣∣∣∣∣∣∣
1 2 4

0 0 2

2 2 0

∣∣∣∣∣∣∣∣∣ = 4 ̸= 0, so the collection of vectors form is linearly independent.

As there are three linear independent vectors, so it forms a basis for R3.

(ii) False. Taking a = (1, 0, 0),b = (1, 1, 0) and c = (0, 1, 0).

It is clear that {a,b}, {b, c} and {c, a} are linearly independent sets.

However, since

∣∣∣∣∣∣∣∣∣
1 0 0

1 1 0

0 1 0

∣∣∣∣∣∣∣∣∣ = 0, so {a,b, c} is not independent set.

Note. You may easily see that b = a+ c, so clearly {a,b, c} is not independent set.

(iii) (1) “ =⇒ ” Suppose that {u,v} is linearly independent set, then

au+ bv = 0 =⇒ a = b = 0

Therefore, consider the equation

α(u+ v) + β(u− v) = 0

(α + β)u+ (α− β)v = 0

From the above, we have

α + β = 0

α− β = 0

and gives α = β = 0.

By definition, {u+ v,u− v} is linearly independent.

“ ⇐= ” On the other hand, suppose that

a(u+ v) + b(u− v) = 0 =⇒ a = b = 0
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Therefore, consider the equation

αu+ βv = 0

α + β

2
(u+ v) +

α− β

2
(u− v) = 0

From the above, we have


α+β
2

= 0

α−β
2

= 0

and gives α = β = 0.

By definition, {u,v} is linearly independent.

(2) I will demonstrate an alternative method to show the linearly independency. Of course,

you can proceed similarly as part (1).

“ =⇒ Suppose {u,v,w} is a linearly independent set, then the matrix
u

v

w

 Row operations−−−−−−−→ E

where E is the reduced row echlon form.

As {u,v,w} is linearly independent, so E has no zero row. Since the matrix
u+ v

v +w

w + u

 −R1+R2→R2−−−−−−−−→


u+ v

w − u

w + u

 R2+R3→R3−−−−−−−→


u+ v

w − v

2w


− 1

2
R3+R2→R2−−−−−−−−−→
1
2
R3→R3


u+ v

−v

w

 R2+R1→R1−−−−−−−→
−R2→R2


u

v

w

 Row operations−−−−−−−→ E

and E has no zero row. Thus, {u+ v,v +w,w + u} is linearly independent set.

“ ⇐= If {u+ v,v +w,w + u} is linearly independent set, then
u+ v

v +w

w + u

 Row operations−−−−−−−→ E ′

where E ′ is the reduced row echlon form and it has no zero row.

From the above, since all row operations are invertible, so we have
u

v

w

 ∼


u+ v

v +w

w + u

 ∼ E ′

and E ′ has no zero row. Thus, {u,v,w} is linearly independent set.
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4 Linear Transformation

(i) (1) Since R2 can be spanned by an orthonormal basis {(1, 0), (0, 1)}, so it sufficies to consider

the reflection on basis vectors to get the matrix representation.

• Step 1: We find a straight line which is perpendicular to y = ax and passes through

(1, 0).

For a > 0, the equation of straight line is y = −1

a
(x− 1).

• Step 2: We find the point of intersection of the straight line y = −1

a
(x − 1) and the

reflection line y = ax.

By solving


y = ax

y = −1

a
(x− 1)

, we get (x, y) =
(

1

a2 + 1
,

a

a2 + 1

)
.

• Step 3: Find the coordinates of the reflection point of (1, 0) by y = ax.

Note that the point of intersection is the mid-point of (1, 0) and the reflection point.

Denote the reflection point by (p, q), then we have
p+ 1

2
=

1

a2 + 1
q + 0

2
=

a

a2 + 1

=⇒


p =

1− a2

a2 + 1

q =
2a

a2 + 1

• Step 4: Denote the matrix representation of the reflection by T , then we have

T

1

0

 =

1− a2

a2 + 1
2a

a2 + 1


• Step 5: Proceed as previous to get T (0, 1) as well, we have

T

0

1

 =

 2a

a2 + 1
a2 − 1

a2 + 1


Thus, the required matrix representation is

T

x

y

 =

 T

1

0

 T

0

1

 
=

1− a2

a2 + 1

2a

a2 + 1
2a

a2 + 1

a2 − 1

a2 + 1


Remark. This matrix is the same as solving tan θ = a and plug into the reflection matrixcos(2 tan−1 a) sin(2 tan−1 a)

sin(2 tan−1 a) − cos(2 tan−1 a)
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(2) Recall that the matrix representation of rotating a vectors by an angle θ anti-clockwisely

about the z-axis is

Rz(θ) =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1


Now, we want to find a matrix representation of rotating a vector by 30◦ clockwisely about

the z-axis, so it flips an orientation of Rz(θ) and thus the matrix is

Rz(−30◦) =


cos 30◦ sin 30◦ 0

− sin 30◦ cos 30◦ 0

0 0 1



=


√
3
2

1
2

0

−1
2

√
3
2

0

0 0 1


(3) Note that we want to find a matrix representation of T so that

T


x

y

z

 =


3x

y

z



It is not hard to see that the matrix representation required is


3 0 0

0 1 0

0 0 1

.

(ii) No, since the translation of vectors in R2 is not linear, it is impossible to find a 2× 2 matrix to

represent.

5 Others

(i) Without loss of generality, suppose that f attained local maximum in c ∈ (a, b).

By definition, there exists δ > 0 such that f(x) ≤ f(c) for any x ∈ (c− δ, c+ δ).

If f ′(c) exists, then by the Carathéodory’s Theorem, there exists a function g defined on (a, b)

such that f(x) − f(c) = g(x)(x − c) for any x ∈ (a, b), and also g is continuous at c with

g(c) = f ′(c).

It follows that g(x)(x− c) ≤ 0 for any x ∈ (c− δ, c+ δ), that is

g(x)

≥ 0 for x ∈ (c− δ, c)

≤ 0 for x ∈ (c, c+ δ)
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As the function g is continuous at c, so we have g(c) = 0, i.e. f ′(c) = 0 .

For f attaining the local minimum in c ∈ (a, b), it is similar.

Remark. The definition provided in the problem set is called the Fréchet Derivative.

(ii) To answer the first question: No. For example, take f(x) = x, and [a, b] = [0, 1].

Of course, f attains unique minimum at x = 0 and unique maximum at x = 1, but f ′(x) = 1 ̸= 0

for any x ∈ (0, 1).

To answer the second question: No. The converse does not true.

Taking f(x) = x3, and [a, b] = [−1, 1], we have f ′(0) = 0, and 0 ∈ (−1, 1) but f does not

attain any local extremum at x = 0.

(iii) Construct a function g : [a, b] → R by

g(x) = f(x)− f(a)− f(b)− f(a)

b− a
(x− a)

for any x ∈ [a, b]. Clearly, g is continuous on [a, b] satisfied g(a) = g(b) = 0.

Moreover, g′ exists for all x ∈ (a, b) as f is differentiable on (a, b).

Applying the Rolle’s theorem, there exists c ∈ (a, b) such that

g′(c) = f ′(c)− f(b)− f(a)

b− a
= 0

that is f ′(c) = f(b)−f(a)
b−a

and thus completes the proof.

(iv) Taking arbitrary p ∈ (a, b). Letting x ∈ (p, b]. By the result of part (iii), there exists c ∈ (p, x)

such that

f(x)− f(p) = f ′(c)(x− p)

If f ′(x) = 0 for any x ∈ (a, b), then f(x) = f(p) for all x ∈ [p, b].

On the other hand, letting y ∈ [a, p). By the result of part (iii), there exists c∗ ∈ (a, p) such that

f(p)− f(y) = f ′(c∗)(p− y)

Since f ′(x) = 0 for any x ∈ (a, b), so f(y) = f(p) for all y ∈ [a, p].

Combining the above, we have f(x) = f(y) = f(p) for all y ∈ [a, p], x ∈ [p, b].

As p is arbitrary, so f is constant on [a, b].
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Alternative Solution (Provided by Chow Chung To).

Suppose f is non-constant on [a, b], there exists m,n ∈ [a, b] with m ̸= n such that

f(m) ̸= f(n).

Without loss of generality, assume m > n.

By the Mean-Value theorem, there exists c ∈ (n,m) such that

f ′(c) =
f(m)− f(n)

m− n

By the assumption that f ′(x) = 0 for any x ∈ (a, b), that implies

f ′(c) = 0 =
f(m)− f(n)

m− n

as c ∈ (n,m) ⊆ (a, b). Contradiction aries and similar when m < n.

Thus, f is constant on [a, b].
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