Suggested Solution to Problem Set 1!

1 Integration

(i) First, we write 22 + 2z + 4 = (z + 1)* + 3.
Letting  + 1 = v/3tan 6, where —g <0< g Then, dx = /3 sec? 0 dé.

The integral becomes

/ T e V3tanf —

22+ 2x + 4 3(tan? 6 + )

:?/(\/ét&ﬂ@—l) do
:@/tan@d@—?/ld@

:1n|se00\—?0+0

-V3sec2 0 db

2242 +4| V3 x+1
=In|y/————| — “Ztan! C
n 3 5 an (\/3)4—

V3 r+1
= lnx2—|—2x+4——tan_1< )+O’
( ) 3 V3

where C, C’ are arbitrary constants.

(ii) First, we write

3¢ —2x  3(1+a?)—22—3 3 2043

1+22 14 22 14 g2

Then, we have

2
/ 2 dx:/M:ln(1+x2)+cl

1+ 22 1+ 22

and

3
/1+x2dx:3tanla:+02

where ¢y, ¢y are arbitrary constants.

x? — 2 2;15 3
dr = dx — — d
/ 14+ 22 v /Sx / /1+:1:2 v

:3x—ln(1+x)—3tan_1x+0

Thus, we have

where (' is an arbitrary constant.

'If you have any problems or typos, please contact me via maxshung.math @gmail.com
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1 1 3
(iii) Since ———— = —sec or , hence we have
2coslbzr 2 2

[rrmte=3 3 () a(3)

[l e )

Note that

e (3) e (5)

Thus, we have
/ 1 dx_l/d[sec 37)—1—1:&11 2)}
2cos 1.5z 3 [sec 3—’“") + tan (3793)}
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=-1 — t — C
nsec(2 +an(2>’—|—
where C'is an arbitrary constant.
1 sec?t
i 1) Ob that = = .
(@v) (1) Observe tha 1+ Si{lzt 2sin®t 4 cos2t  2tan?t + 1
Define f(t) = —————. Note that
1 + sin®

1 1

flm—1t) = = = f(®)

14sin®(m —t)  14sin’t

/wa(t)dt:/ng(t)dtJr/:rf(t)dt
:/ng(t)dtJr/ogf(w—t)dt
f(#)

:Q/ng(t)dt

Next, we compute the definite integral as follows:

o1 2 2¢
[
o l-+sin“t 0 2tan“t+1

:2'1/’5 d(tant)
0

Therefore, we have

2 tan2t+%
1 3
= —tan! <\/§tan t> ‘
V2 0
-2(5-9)
Vo
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(2) Again, we need to be careful that the substitution is not a bijection.

t
Define f(t) = T and observe for 7 <t <, that
1+ sin®t
cos(m — 1 cost
fla—ty= 0D _—

14sin?(r —t)  14+sin’t

/Oﬂf(t)dt:/ogf(t)dtJr[:rf(t)dt
:/ng(t)dwr/ogwdt

—f(®)

:/ng(t)dt—/ogf(t)dt

Therefore, we have

4 t
Thus, we have / —COS_ 5—dt =0
o l4sin“t
sin 2t
3) Define g(t) = ——~—.
) 90 = a7

Since g(t) is not bijective on [0, 7], so we need to separate it into [0, 7] and [7, 7).

Observe that g(m —t) = —g(t) for any ¢ € [T, 7], so we have

T sin2t 2 sin2¢ T sin2t
o l+sin“t o 1-+sin“t z 1+sin“t
2t 2 sin(2m — 2t
/ sin it + / sm(' 7; ) ot
o 1+sin’t o 1+sin®(m—t)

sin 2t 2 sin2t
0 1+smt o 1+4sin“t

0

Remark. Some of you may do in this way:

T sin 2t ™ d(1 + sin*t m
/Sm—dt:/ m:ln(usin%)‘ =0
0 0

1 +sin?¢ 1 +sin®¢ 0
It is incorrect although the numerical answer is the same as the substitution u(¢) = 1+sin®t

is not bijective from [0, 7] to [1, 2].
(v) (Partial fraction decomposition)
(1) Multiplying both sides by (z — a)(z — b) and gives
1=C(zx—b)+ D(z —a)

C+D=0
for any z. Assuming a — b # 0, we have
—bC' — Da =1

1 -1
and hence C' = 2 and D =

a— a—>b



(2) (a) Note that
1 1
312+ 10x + 3

1 1
T Brrl+3) 3 (<x— (—1/3))(z — <—3>>)
1/1/(3-1/3) 1/(3—1/3)
5( +1/3 z+3 )
< (o
8

1 1
3z +1 8\z+3
Therefore, we have

1 1 1 1
/—dxzﬁ/ ! dx_l/ L
o 312+ 10z + 3 8 Jo 3u+1 8Jo ©+3

b ge 1~ tmje s
= | = 1n|o%T — = 1n|xr
8 8

0

e tmo o4 tms
i g

_ln3
8
. xXr

xr
b) Rewrit _ .
(b) Rewrite 5 e =6~ 2+ 1)(z —3)

z r+1-1 1 1

Then, we observe that

3) @+1 —3) 2@-3) 2+1)(z-3)
1 / 4 1/4
( xr+ 1 3)
3 1
_§( 3)+§(44)
Therefore, it follows that

2 2 2
© 3 | | 1
Y dr == d - d
tAQﬁ—Ax—Gz 8%:$—3x+8Z:x+1x
2

2r+1)(x—3)

1
x— 2

3 1
= {gln|x—3|+§ln|x+1|]0

1 3
= é ln 3 — g ln 3
B In3
4
(3) Note that
1 B 1 B 1

x3—2x2—x+2:x2(:c—2)z(x—2) (@2 =1)(z—2)
(x—1)(x+1)(x—2)

Then, we let
1 A B C
= + +
(x—(z+)(z—-2) z—-1 z+1 2x-2




where A, B and (' are real constants.

Multiplying both sides by (z — 1)(x + 1)(z — 2) and gives
l=Az+1)(z—2)+ Bz —1)(x—2)+C(z — 1)(z+ 1)

Putting z = 1 on both sides, we have 1 = A(2)(—1) + 0+ O and so A = —1.
Putting 2 = 2 on both sides, we have 1 =0+ 0+ C(1)(3) and so C' = 3.
Putting # = —1 on both sides, we have 1 = 0 + B(—2)(—3) + 0 and so B = ;.

+1 1 +1 1
6 \x+1 3\x—2
and thus

1 1 1 1 1 1 1
dr — —— dr+ =~ | ——dz + = d
/x3—2x2—$+2x 2/:,;—19”6 $+1x+3/x—2x

1 1 1
:—§ln]$—1]+gln\x+1\+51n]z—2|+0

Therefore, we have

(z —1)(z i 1)(z —2) _% (x i 1)

where (' is an arbitrary constant.

(iv) Note that ! 1 2 1
iv) Note that —— = — = .
er — e % 2 \e? —e® 2sinh x

Hence, we have

/2 1 dI:1/2 1 sihz
] ef—e’® 2 J; sinhz sinhx

_1/2 d(cosh x)
1

2 cosh®z — 1
1 [? 1 1

== - d(cosh
4/1 (coshx—l coshx+1> (cosh)
1

= —[In|coshz — 1| — | coshz + 1|3

4
_11 cosh2 —1 1l coshl —1
—4n cosh2 +1 411 coshl+1

— tanh ! [ — S
14+e+e?



2 Matrix

(i) By applying elementary row operations, we write

10 1]/1 00 10 1|1 00
205010 | =220 00 3[-210
—4R1+R3—R3
4 2 210 01 02 -2|—-4 01
10 11 00 1003
sfaolfe | g g |2 1o | SRR g ]
1R3—Rs 3 3 Ro+R3—R3 3
01 -1/-2 0 % 01 0|-%
5 1
1003 —3 0
Ro R 8 1 1
— |01 0—-5 3 3
2 1
001/ -5 5 O
- 5 1
1 01 3 —3 0
— 8 1 1
Thus, wehave | 2 0 5 -5 3 3
2 1
4 2 2 -5 3 0
(ii) We apply the elementary row operations as part (i), then
20 2|1 00 2 0 1 00
*%R1+R2*>R2
9 5 2010 0 5 -2 10
—2R1+R3—R3
4 3 0]0 01 0 3 -2 01
10 1|3 00 10 1] 3
tR2—Ro —3R2+R3—R
5 7 9 1 2t Hs 7 9
o | O 757w 5 O T 7 01 =5
03 —4|-2 01 00 | &
10 1] 45 0 0 100|-3
5R3—R3 O 1 _% _% % O ;R3+R1—>R1 O 1 O 4
3R3+R2—>R2
00 1[I =35 00 1|1
-1
2 0 2 -3 3 =5
Thus, wehave | 9 5 2 =14 -4 7
4 30 I -3 5

1
3
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3 Basis and linear independence

1 2 3

(i) (1) Since |4 5 6| =0, so the collection of vectors form is linearly dependent.

7 8 9
As it is linear dependent set, so it does not form a basis for R3.

100 100
(2) Suppose that ~ which is in row reduced echelon form, and there

0 2 2 011
are two non-zero rows.

Thus, the collection of vectors form is linearly independent.
As there are only two linear independent vectors, so it is not a basis for R3.
1 2 4
(3) Since |0 0 2| =4 # 0, so the collection of vectors form is linearly independent.

2 20
As there are three linear independent vectors, so it forms a basis for R3.

(ii) False. Takinga = (1,0,0),b = (1,1,0) and c = (0, 1,0).
It is clear that {a, b}, {b, c} and {c, a} are linearly independent sets.

100

However, since [1 1 0| = 0, so {a, b, c} is not independent set.

010
Note. You may easily see that b = a + ¢, so clearly {a, b, c} is not independent set.

(iii) (1) “ =" Suppose that {u, v} is linearly independent set, then
au+bv=0 — a=b=0
Therefore, consider the equation
au+v)+pu—-v)=0
(a4 Byut (@ - f)v =0

a+p5=0
From the above, we have and gives a = = 0.

a—pF=0
By definition, {u + v, u — v} is linearly independent.

“ <= " On the other hand, suppose that

alu+v)+bu—v)=0 = a=0b=0



Therefore, consider the equation

au+ fv=0
OH_ﬂ(u—l—v)+Oé_ﬁ(u—v):0
2 2
atB _

2

From the above, we have and gives a = 3 = 0.

e =
By definition, {u, v} is linearly independent.
(2) I will demonstrate an alternative method to show the linearly independency. Of course,
you can proceed similarly as part (1).

“ — Suppose {u, v, w} is a linearly independent set, then the matrix

u

Row operations

v| —FE

w

where FE is the reduced row echlon form.

As {u, v, w} is linearly independent, so F has no zero row. Since the matrix

u-+v u-+v u+v
—R1+R2—Ra Ro+R3—R3
v+w| —— |w—u| —— |w—-v
w+u W+ u 2w
u+v u
—%R3+R2—>R2 Ro+R1— Ry Row operations E
— v | — V|
%Rg—)Rg —Ro—Ro
A% A%%

and F has no zero row. Thus, {u + v, v + w, w + u} is linearly independent set.

“<«—=1If {u+ v,v +w,w + u} is linearly independent set, then

u—+v
Row operations

viw | ——F

W+ u

where E’ is the reduced row echlon form and it has no zero row.

From the above, since all row operations are invertible, so we have

u u+v
/
v]|~]|Vv+w ~F

W W+ u

and E’ has no zero row. Thus, {u, v, w} is linearly independent set.
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4 Linear Transformation

(i) (1) Since R? can be spanned by an orthonormal basis {(1,0), (0, 1)}, so it sufficies to consider

the reflection on basis vectors to get the matrix representation.

» Step 1: We find a straight line which is perpendicular to y = ax and passes through
(1,0).
1
For a > 0, the equation of straight line is y = ——(z — 1).
a
1
* Step 2: We find the point of intersection of the straight line y = ——(z — 1) and the
a

reflection line y = ax.

B Vi y=ar ) B 1 a
y solving 1 , we get (z,y) = 2il 21
y=-—(@-1)

* Step 3: Find the coordinates of the reflection point of (1,0) by y = ax.
Note that the point of intersection is the mid-point of (1,0) and the reflection point.

Denote the reflection point by (p, ¢), then we have

pt+1 1 1—a?

g p = —

2 a?+1 a?+1
q+0 a —  2a
2 T a2+1 T =21

» Step 4: Denote the matrix representation of the reflection by 7', then we have

1—a?

T 1 — a22+1
a

0 =
a?+1

¢ Step 5: Proceed as previous to get 7'(0, 1) as well, we have

2a
1 a*—1
a?+1
Thus, the required matrix representation is
x 1 0
T = T T
Y 0 1
1—a? 2a
_lat+1 a?2+1
20 a*—1
a?+1 a’>+1

Remark. This matrix is the same as solving tan § = a and plug into the reflection matrix

cos(2tan~ta) sin(2tan"!a)

sin(2tan"'a) —cos(2tan"!a)
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(2) Recall that the matrix representation of rotating a vectors by an angle # anti-clockwisely

about the z-axis is

cosf —sinf 0
R.(0) = [ sin@ cosf 0
0 0 1
Now, we want to find a matrix representation of rotating a vector by 30° clockwisely about

the z-axis, so it flips an orientation of R, () and thus the matrix is

cos30°  sin30° O
R.(=30°) = | —sin30° cos30° 0
0 0 1

F Lo

=4 £ o0

0 0 1

(3) Note that we want to find a matrix representation of 7" so that

x 3x
Tlyl=1y
z z

300

It is not hard to see that the matrix representation requiredis | 0 1 0
0 01

(ii) No, since the translation of vectors in R? is not linear, it is impossible to find a 2 x 2 matrix to

represent.

5 Others

(i) Without loss of generality, suppose that f attained local maximum in ¢ € (a, b).
By definition, there exists 0 > 0 such that f(x) < f(c) forany z € (¢ — d,c + 0).
If f'(c) exists, then by the Carathéodory’s Theorem, there exists a function g defined on (a, b)
such that f(z) — f(¢) = g(x)(z — ¢) for any x € (a,b), and also g is continuous at ¢ with
g(c) = f'(o).
It follows that g(z)(z — ¢) < 0 forany « € (¢ — 0, ¢+ ¢), that is
>0 forz e (c—9dc)

g(x)
<0 forx € (c,c+90)
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(ii)

(iii)

@iv)

As the function ¢ is continuous at ¢, so we have g(c) = 0, i.e. f'(c) =0.
For f attaining the local minimum in ¢ € (a, b), it is similar.

Remark. The definition provided in the problem set is called the Fréchet Derivative.

To answer the first question: No. For example, take f(z) = z, and [a, b] = [0, 1].

Of course, f attains unique minimum at x = 0 and unique maximum atx = 1,but f'(x) =1 # 0
forany z € (0,1).

To answer the second question: No. The converse does not true.

Taking f(z) = 23, and [a,b] = [—1, 1], we have f/(0) = 0, and 0 € (—1,1) but f does not

attain any local extremum at = = 0.

Construct a function g : [a,b] — R by

for any = € [a, b]. Clearly, g is continuous on [a, b] satisfied g(a) = g(b) = 0.
Moreover, ¢’ exists for all z € (a, b) as f is differentiable on (a, b).

Applying the Rolle’s theorem, there exists ¢ € (a, b) such that

70 = 10 - U@

thatis f'(c) = £ (bl),:a(“) and thus completes the proof.

Taking arbitrary p € (a,b). Letting = € (p, b]. By the result of part (iii), there exists ¢ € (p, x)

such that

If f/(x) =0 forany x € (a,b), then f(x) = f(p) forall z € [p,b].
On the other hand, letting y € [a, p). By the result of part (iii), there exists ¢* € (a, p) such that

f) = fly) = f(c)p—y)

Since f'(x) = 0 for any x € (a,b), so f(y) = f(p) forall y € [a, p|.
Combining the above, we have f(z) = f(y) = f(p) forall y € [a,p|,z € [p,]].

As p is arbitrary, so f is constant on [a, b].

11



Alternative Solution (Provided by Chow Chung To).

Suppose [ is non-constant on [a, b], there exists m, n € [a, b] with m # n such that

f(m) # f(n).

Without loss of generality, assume m > n.

By the Mean-Value theorem, there exists ¢ € (n, m) such that

By the assumption that f’(x) = 0 for any « € (a, b), that implies

f(m) — f(n)

m—n

fle)=0=

as ¢ € (n,m) C (a,b). Contradiction aries and similar when m < n.

Thus, f is constant on [a, b].
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